Определение прямоугольных и географических координат. Определение координат точек местности (объектов). Как же определяют географические координаты по карте
Скачать с Depositfiles
6. РЕШЕНИЕ ЗАДАЧ ПО ТОПОГРАФИЧЕСКОЙ КАРТЕ
6.I. ОПРЕДЕЛЕНИЕ НОМЕНКЛАТУРЫ ЛИСТА КАРТЫ
При решении ряда проектных и изыскательских задач возникает необходимость в поиске нужного листа карты заданного масштаба для определенного участка местности, т.е. в определении номенклатуры данного листа карты. Определить номенклатуру листа карты можно по географическим координатам точек местности на данном участке. При этом можно также использовать плоские прямоугольные координаты точек, так как имеются формулы и специальные таблицы для пересчета их в соответствующие географические координаты.
ПРИМЕР.Определить номенклатуру листа карты масштаба 1: 10 000 по географическим координатам точки М:
широта = 52 0 48 ’ 37 ’’ ; долгота L = 100°I8′ 4I».
Сначала необходимо определить номенклатуру листа карты масштаба
I: I 000 000, на котором расположена точка М c заданными координатами. Как известно, земная поверхность делится параллели-ми, проводимыми через 4°, на ряды, обозначаемые заглавными буквами латинского алфавита. Точка N c широтой 52°48’37 » находится в I4-м ряду от экватора, расположенном между параллелями 52 о и 56°. Этому ряду соответствует I4-я буква латинского алфавиты -N. Известно также, что земная поверхность делится меридианами, проводимыми через 6°, на 60 колонн. Колонны нумеруются арабскими цифра-ми с запада на восток, начиная c меридиана c долготой I80°. Номера колонн отличаются от номеров соответствующих им 6-градусных зон проекции Гаyсса на 30 единиц. Точка М c долготой 100°18′ 4I» находится в 17-й зоне, расположенной между меридианами 96° и 102°. Этой зоне соответствует колонна c номером 47. Номенклатура листа карты масштаба I: 1 000 000 слагается из буквы, обозначающей данный ряд, и номера колонны. Следовательно, номенклатура листа карты масштаба 1: 1 000 000, на котором расположена точка М, будетN-47.
Далее необходимо определить номенклатуру листа карты масштабы I: 100 000, на который попадает точкаM. Листы карты масштаба 1: 100 000 получают делением листа нарты масштаба 1: I 000 000 на 144 части (рис. 8).Разобьем каждую сторону листаN-47 на 12 равных частой и соединим соответствующие точки отрезками параллелей и меридианов.Полученные листы карты масштаба 1: 100 000 нумеруются арабскими цифрами и имеют размеры: 20 ‘ — по широте и 30’- по долготе. Из рис. 8 видно, что точка M с заданными координатами попадает на лист карты масштаба I: 100 000 e номером 117. Номенклатура данного листа будет N-47-117.
Листы карты масштаба I: 50 000 получают делением листа карты масштабаI: 100 000 на 4 части и обозначают заглавными буквами русского алфавита (рис. 9). Номенклатура листа этой карты, на который попадает точна М,будет N- 47- 117. B свою очередь, листы карты масштаба I: 25 000 получают делением листа карты масштаба I: 50 000 на 4 части и обозначают строчными буквами русского алфавита (рис. 9). Точка M с заданными координатами попадает на лист карты масштаба I: 25 000, имеющий номенклатуру N-47-117 –Г-А.
Наконец, листы карты масштаба 1: 10 000 получают делением листа карты масштаба 1: 25 000 на 4 части и обозначают арабскими цифрами. Из рис. 9 видно, что точка М располагается на листе карты этого масштаба, имеющем номенклатуруN-47-117-Г-А-1.
Ответ к решению данной задачи помещают на чертеже.
6.2. ОПРЕДЕЛЕНИЕ КООРДИНАТ ТОЧЕК НА КАРТЕ
Для каждой токи на топографической карте можно определить ее географические координаты (широту и долготу) и прямоугольные координаты Гаусса х, у.
Для определения этих координат используется градусная и километровая сетки карты. для определения географических координат точки Р проводят ближайшие к данной точке южную параллель и западный меридиан, соединив одноимённые минутные деления градусной рамки (рис. 10).
Определяют широту В о и долготу L о точки А о пересечения проведенных меридиана и параллели. Через заданную точку Р проводя тлинии, параллельные проведенным меридиану и параллели, и измеряют при помощи миллиметровой линейки расстояния В= А 1 Р и L= А 2 P, а также размеры минутных делений широты С и долготы на карты. Географические координаты точки Р определяют по формулам C l
— широта: B p = B o + *60 ’’
— долгота: L p = L o + *60’’ , измеряют до десятых долей миллиметра.
Расстояния b , l , C b , C l измеряют до десятых долей миллиметра.
Для определения прямоугольных координат точки Р используют километровую сетку карты. С помощью оцифровки этой сетки на карте находят координаты Х о и У о юго-западного угла квадрата сетки, в котором находится точка Р (рис. 11). Затем из точки Р опускают перпендикуляры С 1 Л и C 2 Л на стороны этого квадрата. С точностью до десятых долей миллиметра измеряют длины этих перпендикуляров ∆Х и ∆У и с учетом масштаба карты определяют их фактические значения на местности. Например, измеренное расстояние С 1 Р равно 12,8 мы, a масштаб карты 1: 10 000. Согласно масштабу, I мм на карте соответствует 10 м не местности, а значит,
∆Х= 12,8 х 10 м = 128 м.
После определения значений ∆Х и ∆У находят прямоугольные координаты точки Р по формулам
X p = X o +∆ X
Y p = Y o +∆ Y
Точность определения прямоугольных координат точки зависит от масштаба карты и может быть найдена по формуле
t =0.1* M , мм,
где М-знаменатель масштаба карты.
Например, для карты масштаба I: 25 000 точность определения координат Х и У составляет t = 0,1 х 25 000 = 2500 мм = 2,5 м .
6.3. ОПРЕДЕЛЕНИЕ УГЛОВ ОРИЕНТИРОВАНИЯ ЛИНИЙ
К углам ориентирования линий относятся дирекционный угол, истинный и магнитный азимуты.
Для определения по карте истинного азимута некоторой линии ВС (рис.12) используют градусную рамку карты. Через начальную точку В этой линии проводят параллельно вертикальной линии градусной рамки лини истинного меридиана (пунктирная линияNS), а затем геодезическим транспортиром измеряют величину истинного азимута А вс.
Для определения пo карте дирекционного угла некоторой линии ДЕ (рис. I2) используют километровую сетку карты. Через начальную точку D проводят параллельно вертикальной линии километровой сетки (пунктирная линия KL). Проведенная линия будет параллельной оси абсцисс проекции Гаусса, т. е, осевому меридиану данной зоны. Дирекционный угол α de измеряют геодезическим транспортом относительно проведенной линии KL. Следует отметить, что и дирекционный угол и истинный азимуты отсчитываются,а следовательно, и измеряются по часовой стрелке относительно начального направления до ориентируемой линии.
Кроме непосредственного измерения дирекционного угла линии на карте с помощью транспортира, можно определить значение этого угла другим способом. Для этого определения прямоугольные координаты начальной и конечной точек линии (Х д,У д,Х е, У е). Дирекционный угол данной лини может быть найден по формуле
При выполнении вычислений по данной формуле с помощью микрокалькулятора следует помнить, что уголt=arctg(∆y/∆x) является не дирекционном, а табличным углом. Значение дирекционного угла в этом случае необходимо определить с учетом знаков ∆Х и ∆У по известным формулам приведения:
Угол α лежит в І четверти:∆Х>0; ∆Y>0; α=t;
Угол α лежит во IIчетверти:∆Х<0; ∆Y>0; α=180 o -t;
Угол α лежит в IIIчетверти:∆Х<0; ∆Y<0; α=180 o +t;
Угол α лежит в ІVчетверти:∆Х>0; ∆Y<0; α=360 o -t;
На практике при определении ориентирных углов линии обычно сначала находят ее дирекционный угол, а затем, зная склонение магнитной стрелки δ и сближение меридианов γ (рис. 13), переходят к истинному к магнитному азимутам, пользуясь следующими формулами:
А=α+γ;
А м =А-δ=α+γ-δ=α-П,
где П =δ-γ — суммарная поправка за склонение магнитной стрелки и сближение меридианов.
Величины δ и γ берутся со своими знаками. Угол γ отсчитывается от истинного меридиана до магнитного и может быть положительным(восточным) и отрицательным (западным). Угол γ отсчитывается от градусной рамки (истинного меридиана) до вертикальной линии километровой сетки и также может быть положительным (восточным) и отрицательным (западным). В схеме, изображенной на рис. 13, склонение магнитной стрелки δ восточное, а сближение меридианов — западное(отрицательное).
Среднее значение δ и γ для данного листа карты приводятся в юго-западном углу карты ниже оформительной рамки. Здесь же указываются дата определения склонения магнитной стрелки, величина его годового изменения и направления этого изменения. Пользуясь указанными сведениями, необходимо вычислять величину склонения магнитной стрелки δ на дату его определения.
ПРИМЕР. Склонения на 1971 г. восточное 8 о 06’ . Годовое изменение склонение западное 0 о 03’.
Величина склонения магнитной стрелки в 1989 г. будет равна: δ=8 о 06’-0 о 03’*18=7 о 12’.
6.4 ОПРЕДЕЛЕНИЕ ПО ГОРИЗОНТАЛЯМ ВЫСОТ ТОЧЕК
Отметка точки, расположенной на горизонтали,равна отметке этой горизонтали.Если горизонталь не оцифрована,то ее отметка находится по оцифровке соседних горизонталей с учетом высоты сечения рельефа. Следует помнить, что оцифровку на карте имеет каждая пятая горизонталь, и для удобства определения отметок оцифрованные горизонтали вычерчивают утолщенными линиями (рис. 14, а). Отметки горизонтали подписывают в разрывах линий, чтобы основание цифр было направленно в сторону ската.
Более общим является случай, когда точка находится между двумя горизонталями. Пусть точка Р (рис. 14, б), отметку которой требуется определить, расположена между горизонталями с отметками 125 и 130 м.Через точку Р проводят прямую АВ как кратчайшее расстояние между горизонталями и на плане измеряют заложение d = АВ и отрезок l = АР. Как видно из вертикального разреза по линии АВ (рис. 14, в), величина ∆h представляет собой превышение точки Р над младшей горизонталью(125 м) и может быть вычислена по формуле
∆ h= * h ,
где h — высота сечения рельефа.
Тогда отметка точки Р будет равна
H р = H а + ∆h.
Если точка расположена между горизонталями с одинаковыми отметками(точка М на рис. 14, а) либо внутри замкнутой горизонтали(точка К на рис. 14, а), то отметку можно определить лишь приближенно. При этом считают,чтоотметкаточкименьшеилибольшевысотыэтойгоризонталина половину высоты сечения рельефа, т.е. 0,5h (например, Н м =142,5 м,H к =157,5 м). Поэтому отметки характерных точек рельефа (вершина холма, дно котловины и т. п.), полученные из измерений на местности, выписывают на планах и картах.
6.5 ОПРЕДЕЛЕНИЕ КРУТИЗНЫ СКАТА ПО ГРАФИКУ ЗАЛОЖЕНИЙ
Крутизной ската называется угол наклона ската к горизонтальной плоскости. Чем больше угол, тем скат круче. Величина угла наклона ската v вычисляют по формуле
V=аrctg(h / d ),
где h -высота сечения рельефа,м;
d-заложение, м;
Заложением называется расстояние на карте между двумя соседними горизонталями; чем круче скат, тем меньше заложение.
Чтобы избежать расчетов при определении уклонов и крутизны скатов по плану или карте, на практике пользуются специальными графиками, называемыми графиками заложений.График заложений представляет собой график функции d = n * ctgν , абсциссами которого являются значения углов наклона, начиная с 0°30´, а ординатами- значения заложений, соответствующих этим углам наклона и выраженных в масштабе карты (рис. 15,а).
Для определения крутизны ската раствором циркуля берут с карты соответствующее заложение (например, АВ на рис. 15, б) и переносят его на график заложений (рис. 15, а) так, чтобы отрезок АВ оказался параллельным вертикальным линиям графика, а одна ножка циркуля располагалась на горизонтальной линии графика, другая ножка — на кривой заложений.
Значения крутизны ската определяют, пользуясь оцифровкой горизонтальной шкалы графика. В рассматриваемом примере (рис. 15) крутизна ската составляет ν= 2°10´.
6.6. ПРОЕКТИРОВАНИЕ ЛИНИИ ЗАДАННОГО УКЛОНА
При проектировании автомобильных и железных дорог, каналов, различных инженерных коммуникаций возникает задача построения на карте трассы будущего сооружения с заданным уклоном.
Пусть на карте масштаба 1:10000 требуется наметить трассу автомобильной дороги между точками А и В (рис. 16). Ч тобы уклон ее на всем протяжении не превышалi =0,05 . Высота сечения рельефа на карте h = 5 м .
Для решения задачи рассчитывают величину заложения, соответствующего заданному уклонуiи высоте сечения h:
Затем выражают заложение в масштабе карты
где М-знаменатель численного масштаба карты.
Величину заложенияd´ можно определить также по графику заложений, для чего надо определить угол наклона ν, соответствующий заданному уклонуi, и раствором циркуля измерить заложение для этого угла наклона.
Построение трассы между точками А и В осуществляется следующим образом. Раствором циркуля, равным заложениюd´ =10 мм, из точки А засекают соседнюю горизонталь и получают точку 1 (рис. 16). Из точки 1 тем же раствором циркуля засекают следующую горизонталь, получая точку 2, и т.д. Соединив полученные точки, проводят линию с заданным уклоном.
Во многих случаях рельеф местности позволяет наметить не один, а несколько вариантов трассы (например.Варианты 1 и 2 на рис.16), из которых выбирается наиболее приемлемый по технико-экономическим соображениям.Так,например,из двух вариантов трассы,проведенной примерно в одинаковых условиях, будет выбран вариант с меньшей длиной проектируемой трассы.
При построении линии трассы на карте может оказаться,что из какой-либо точки трассы раствор циркуля не достигает следующей горизонтали, т.е. рассчитанное заложение d´ меньше фактического расстояния между двумя соседними горизонталями. Это означает, что на данном участке трассы уклон ската меньше заданного, и при проектировании дорого расценивается как положительный фактор. В этом случае следует данный участок трассы провести по кратчайшему расстоянию между горизонталями по направлению к конечной точке.
6.7. ОПРЕДЕЛЕНИЕ ГРАНИЦЫ ВОДОСБОРНОЙ ПЛОЩАДИ
Водосборной площадью , или бассейном. Называется участок земной поверхности, с которой по условиям рельефа вода должна стекать в данный водосток (лощину, ручей, реку и т.д.). Оконтуривание водосборной площади производиться с учетом рельефа местности по горизонталям. Границами водосборной площади служат линии водоразделов, пересекающие горизонтали под прямым углом.
На рис.17 изображена лощина, по которой протекает ручейPQ. Граница бассейна показана пунктирной линиейHCDEFGи проведена по линиям водоразделов. Следует помнить, что водораздельные линии так же, как и водосборные линии (тальвеги). Пересекают горизонтали в местах их наибольшей кривизны (меньшим радиусом закругления).
При проектировании гидротехнических сооружений (дамб, шлюзов, насыпей, плотин и т.п.) границы водосборной площади могут несколько изменять свое положение. Например, пусть на рассматриваемом участке (рис. 17) намечено построить гидротехническое сооружение (АВ-ось этого сооружения).
Из конечных точек А и В проектируемого сооружения проводят к водоразделам прямыеAFиBC, перпендикулярные к горизонталям. В этом случае границей водораздела станет линияBCDEFA. Действительно, если взять точки m 1 и m 2 внутри бассейна, а точки n 1 и n 2 вне его, то трудно заметить, что направление ската от точек m 1 и m 2 идет к намечаемому сооружению, а от точек n 1 и n 2 минует его.
Зная водосборную площадь, среднегодовое количество осадков,условия испарения и впитывание влаги почвой, можно подсчитать мощность водного потока для расчета гидротехнических сооружений.
6.8. Построение профиля местности по заданному направлению
Профилем линии называется вертикальный разрез по данному направлению. Необходимость в построении профиля местности по заданному направлению возникает при проектировании инженерных сооружений, а также при определении видимости между точками местности.
Для построения профиля по линии АВ (рис. 18,а), соединив точки А и В прямой линей, получим точки пересечения прямой АВ с горизонталями (точки 1, 2, 3, 4, 5, 6, 7). Эти точки, а также точки А и В, переносят на полоску бумаги, приложив ее к линии АВ, и подписывают отметки, определяя их по горизонталям. Если прямая АВ пересекает водораздельную или водосборную линию, то отметки точек пересечения прямой с этими линиями определят приближенно интерполированием по этим линиям.
Построение профиля удобнее всего выполнять на миллиметровой бумаге. Начинают построение профиля с того, что проводят горизонтальную линию MN, на которую переносят с полоски бумаги расстояния между точками пересечения А, 1, 2, 3, 4, 5, 6, 7,В.
Выбирают условный горизонт таким образом, чтобы линия профиля нигде не пересекалась с линией условного горизонта. Для этого отметку условного горизонта берут на 20-20 м меньше минимальной отметки в рассматриваемом ряду точекА, 1, 2, …, В. Затем выбирают вертикальный масштаб (обычно для большей наглядности в 10 раз крупнее горизонтального масштаба, т.е. масштаба карты). В каждой из точек А, 1, 2. …,В на линии MN восстанавливают перпендикуляры (рис. 18, б) и на них в принятом вертикальном масштабе откладывают отметки этих точек. Соединив полученные точки А´, 1´, 2´, …,В´ плавной кривой, получают профиль местности по линии АВ.
Топографические карты наиболее интересны для туристов, особенно крупномасштабные. В основе топографических карт лежит геометрическое понятие зоны поверхности Земли, образованной двумя меридианами, разнесенными на 6 градусов.
Размеры такой зоны в виде «дольки» позволяют создать топографические карты практически без заметных искажений. Весь земной эллипсоид разбивают на 60 зон. Зоны нумеруются с запада на восток, начиная с нулевого (гринвичского) меридиана. Первая зона простирается с меридиана 0 градусов до меридиана 6 градусов. Центральный (осевой) меридиан первой зоны — 3 градуса. Топографические карты в странах СНГ построены на базе проекции Гаусса- Крюгера. С математической точки зрения для создания проекции карты земную поверхность проецируют на цилиндр, ось лежит в плоскости экватора. Боковая поверхность цилиндра касается осевого (среднего) меридиана зоны.
Зона проецируется на боковую поверхность цилиндра, которая затем разворачивается в плоскость. Осевые меридианы каждой зоны изображаются прямыми линиями и без искажений, сохраняют масштаб на всем своем протяжении. Остальные меридианы зоны и параллели изображаются в проекции кривыми линиями. Искажения длин линии увеличиваются по мере удаления на запад или восток от осевого меридиана и на границах зоны становятся наибольшими, достигая величины порядка 0,1% от длины линии, измеряемой по карте. Например, если масштаб на осевом меридиане равен 500 метров в 1 см, то на краю зоны он будет равен 499,5 метров в 1 см. Ввиду незначительности искажений обычно считают, что масштаб любой топографической карты для всех ее участков является практически постоянным.
Если известен номер зоны N, то долгота центрального меридиана будет равна N х 6 — 3 градусов. На карте всей зоны создается обычная прямоугольная система координат с началом отсчета в точке пересечения осевого меридиана с экватором. В картографии оси обозначаются иначе, чем общепринято. В каждой зоне за вертикальную ось (ось X) принят осевой меридиан. Горизонтальной осью Y является линия экватора. При определенной таким образом системе координат все значения координат X в северном полушарии будут положительными. А значения координат Y будут зависеть от расположения выбранной точки по отношению к осевому меридиану зоны и следовательно, могут быть положительными или отрицательными.
Для удобства работы, чтобы не было отрицательных значений координат, условились считать координату Y в начале координат равной не нулю, а 500 километров. Отсюда следует, что все точки, расположенные западнее осевого меридиана, будут иметь координату Y менее 500 км, а расположенные восточнее - более 500 км. В южном полушарии в тех же целях для координаты X вводится смещение в 10 000 км. Для того чтобы указать зону, в которой расположен объект, принято номер зоны записывать при координате Y первыми цифрами, за которыми следует шестизначное число, показывающее значение координаты Y в метрах.
Так, если точка М расположена в 12-й зоне и находится к востоку от осевого меридиана на удалении 80 300 м, то ее координата Y имеет значение 12 580 300, где число 12 обозначает номер зоны, а к расстоянию 80 300 метров добавлено 500 км, значение координаты Y осевого меридиана. Если точка М находится на удалении от экватора в 3 260 700 метров, то ее координата X равна 3 260 700.
На топографических картах система плоских прямоугольных координат зоны задается в виде координатной километровой сетки. Горизонтальные линии сетки параллельны экватору, а вертикальные — осевому меридиану. Эти линии проводятся на равных расстояниях одна от другой и образуют набор квадратов. Для каждого масштаба установлены свои размеры квадратов сетки, которые приведены в таблице ниже.
В таблице показаны также размеры отдельных наиболее часто используемых листов карты. Границами листов карты являются меридианы и параллели. Базовым листом карты является лист в масштабе 1:1 000 000 (миллионка), имеющий протяжение по широте в 4 градуса и долготе в 6 градусов. Карты более крупных масштабов образуются из «миллионки» соответствующей нарезкой (разграфкой). Для того чтобы можно было легко и быстро находить нужные листы карты, каждый из них имеет свое условное обозначение. Следует обратить внимание, что направление линий сетки не совпадает с направлениями север - юг и восток — запад, хотя и близко к ним. Наибольшие отклонения наблюдаются у границ зоны, где они достигают 3 градусов.
Отклонение направления истинного меридиана от вертикальной линии координатной сетки получило название сближения меридианов (Сб). Величина сближения меридианов зависит от местоположения точки на карте.
В качестве примера рассмотрим определение координат точки, заданной на карте масштаба 1:100 000. На рисунке ниже приведен участок карты, расположенной в 7-й зоне с долготами от 36 до 42 градусов. По вертикали сетки приведены координаты линий сетки в километрах, мелкими цифрами первые (старшие) разряды, крупными последние (младшие).
Причем, чтобы не загромождать карту, мелкие (старшие) цифры могут не повторяться каждый раз, так как они всюду одинаковы. По горизонтали — то же самое, только первая цифра 7 - это номер зоны. Рассматривая топографические карты, можно заметить, что координатных сеток на ней две. Первая - это стандартная с географическими координатами, указанными лишь по краю карты, а вторая сетка - километровая с шагом 2 см (2 км). Прикладывая линейку к ближайшим линиям сетки, определяем смещение (в мм) внутри квадрата и переводим их в расстояние согласно масштабу.
По оцифровке линий сетки определяем их координаты. Суммируя найденные значения, определяем координаты точки: X = 409 080 м, Y = 6 200 450 м (номер зоны не включен). Более удобно производить измерения специальной шкалой, имеющей вертикальную и горизонтальную оси, проградуированные в соответствии с масштабом карты. Для этого необходимо наложить шкалу на карту таким образом, чтобы перекрестье осей совпало с объектом на карте, а оси были направлены параллельно сетке карты. Тогда нужные смещения считываются с обеих шкал в точках пересечения с сеткой карты.
Изготовление шкалы для определения прямоугольных координат точки на топографической карте.
Подобные шкалы, отдельно или с компасом, выпускаются в США, но для нас они бесполезны, так как наши карты выпускаются в других масштабах. Но такую шкалу можно сделать самостоятельно. Для этого ее надо распечатать на прозрачной пленке на принтере и приклеить к планшету компаса. Предлагаемый вариант сделан для компаса серии «Азимут», это жидкостный компас с прямоугольным планшетом, в середине которого расположена большая лупа. Шкала приклеивается скотчем с обратной стороны планшета строго под лупой. Приклеивать надо аккуратно по всему периметру, чтобы туда не проникала . Предпочтительно использовать широкий прозрачный скотч, перекрывающий всю поверхность, в этом случае лучше распечатать шкалу в зеркальном отображении.
Что можно сделать с определенными таким образом координатами данной точки?
Если в вашем GPS-навигаторе записана карта, то полученные координаты можно ввести в прибор, обозначить точку и затем отправиться в путь. Если же необходимо на бумажной карте отметить точку по определенным навигатором координатам, то это будет задачей, противоположной уже рассмотренной. Она решается аналогичным образом, только в обратном порядке. По старшим цифрам (тысячи метров) находится квадрат, а по остатку - смещение внутри квадрата.
Топографические карты в универсальной поперечной проекции Меркатора (UTM — Universal Transverse Mercator).
В данной проекции выполняются топографические карты США. Понятие и размеры зоны в проекции UTM такие же, как и в проекции Гаусса-Крюгера. Однако имеются и различия. В проекции UTM боковая поверхность цилиндра при создании карты пересекает поверхность зоны в двух точках, отстоящих от осевого меридиана на 180 000 метров. Вследствие этого масштаб на осевом меридиане отличен от единицы и составляет 0,9996, в точках же пересечения зоны с цилиндром масштаб равен 1. Впрочем, для практического применения это не очень существенно, так как измерения производятся по координатной сетке. Размеры квадратов координатной сетки могут быть приведены в дюймах, а расстояния в милях — сухопутная или статутная миля равна 1609 метров.
По материалам книги «Все о GPS-навигаторах».
Найман В.С., Самойлов А.Е., Ильин Н.Р., Шейнис А.И.
Тема №2: Подготовка карты к работе, измерение по карте. Определение координат и целеуказание.
Занятие №2 Измерения на карте.
Вопрос 1: Плоские прямоугольные координаты на картах, определение прямоугольных координат на карте, нанесение объектов на карту.
Прямоугольные координаты (плоские) - линейные величины (абсцисса Х и ордината У), определяющие положение точки на плоскости (карте) относительно двух взаимно перпендикулярных осей Х и У. Абсцисса Х и ордината V точки Л - расстояния от начала координат до оснований перпендикуляров, опущенных из точки А на соответствующие оси, с указанием знака.
В топографии и геодезии ориентирование производится по северу со счетом углов по ходу часовой стрелки. Поэтому для сохранения знаков тригонометрических функций положение осей координат, принятое в математике, повернуто на 90° (за ось Х принята вертикальная линия, за ось У-горизонтальная).
Прямоугольные координаты (Гаусса) на топографических картах применяются по координатным зонам на которые делится поверхность Земли при изображении ее на картах в Проекции Гаусса (см. п.1.4). Координатные зоны - части земной поверхности, ограниченные меридианами с долготой, кратной 6°.
Рис. 4. Система прямоугольных координат на топографических картах:
a - одной зоны; б - части зоны
Счет зон идет от Гринвичского меридиана с запада на восток. Первая зона ограничена меридианами 0 и 6°, вторая - 6 и 12°, третья -12 и 18° и т. д. Территория СССР располагается -в 29 зонах (от 4-й до 32-й включительно). Протяженность каждой зоны с севера на юг составляет примерно 20000 км. Ширина зоны на экваторе равна примерно 670 км, на широте 40°- 510, на широте 50°-430, на широте 60°-340 км.
Все топографические карты в пределах одной зоны имеют общую систему прямоугольных координат. Началом координат в каждой зоне служит точка пересечения среднего (осевого) меридиана зоны с экватором (рис. 15), средний меридиан зоны соответствует оси абсцисс (X), а экватор-оси ординат (У). При таком расположении координатных осей абсциссы точек, расположенных южнее экватора, и ординаты точек, расположенных западнее среднего меридиана, будут иметь отрицательные значения. Для удобства пользования координатами на топографических картах принят условный счет ординат, исключающий отрицательные значения координаты У. Это вызвано тем, что отсчет ординат идет не от нуля, а от величины 500 км, т. е. начало координат в каждой зоне как бы перенесено на 500 км влево вдоль оси «У». Кроме того, для однозначного определения положения точки по прямоугольным координатам на земном шаре к значению координаты у слева приписывается номер зоны (однозначное или двузначное число). Если, например, точка имеет координаты х =5 650 450; у =3620840, то это значит, что она расположена в третьей зоне на удалении 120 км 840 м (620840-500000) к востоку от среднего меридиана зоны и на удалении 5650 км 450 м к северу от экватора.
Полные координаты - прямоугольные координаты, указанные полностью, без каких-либо сокращений. В примере, приведенном выше, даны полные координаты точки.
Сокращенные координаты применяются для ускорения целеуказания по топографической карте. В этом случае указывают только десятки и единицы километров и метры, например, х = 50450; у = 20840.
Сокращенные координаты нельзя применять, если район действий охватывает пространство протяженностью более 100 км по широте или долготе.
Координатная (километровая) сетка (рис. 16) - сетка квадратов на топографических картах, образованная горизонтальными и вертикальными линиями, проведенными параллельно -осям прямоугольных координат через определенные интервалы; на карте масштаба 1: 25 000 - через 4 см, на картах масштабов 1:50000, 1:100 000 и 1:200 000 - через 2 см. Эти линии называются километровыми.
На карте масштаба 1:500 000 координатная сетка полностью не показывается, наносятся только выходы километровых линий по сторонам рамки через 2 см. При необходимости, по этим выходам координатная сетка может быть прочерчена на карте.
Координатная сетка используется для определения прямоугольных координат и нанесения на карту точек, объектов, целей по их координатам, для целеуказания и отыскания на карте различных объектов (пунктов), для ориентирования карты на местности, измерения дирекционных углов, приближенного определения расстояний и площадей.
Рис. 16. Координатная (километровая) сетка на топографических
картах различных масштабов
Километровые линии на картах подписываются у их выходов за рамкой листа и в девяти местах внутри листа карты. Ближайшие к углам рамки километровые линии, а также ближайшее к северо-западному углу пересечение линий подписываются полностью, остальные сокращенно, двумя цифрами (указываются только десятки и единицы километров). Подписи у горизонтальных линий соответствуют расстояниям от оси ординат (от экватора) в километрах. Например, подпись- 6082 в правом верхнем углу (рис. 17) показывает, что данная линия отстоя от экватора на удалении 6082 км
Подписи у вертикальных линий обозначают номер зоны (одна или две первые цифры) в расстояние в километрах (всегда три цифры) от начала координат, условно перенесенного к западу от среднего меридиана на 500 км. Например, подпись 4308 в левом верхнем углу означает: 4 - номер зоны, 308 - расстояние от условного начала координат в километрах.
Рис.17. Дополнительная координатная сетка
Дополнительная координатная (километровая) сетка предназначается для преобразования координат одной зоны в систему координат другой, соседней зоны. Она может быть нанесена на топографических картах масштабов 1:25 000, 1:50 000, 1:100 000 и 1:200 000 по выходам километровых линий в смежной западной или восточной зоне Выходы километровых линий в виде черточек с соответствующими подписями даются на картах, расположенных на протяжении 2° к востоку и западу от граничных меридианов зоны.
На рис. 17 черточки на внешней стороне западной рамки с подписями 816082 и на северной стороне рамки с подписями 369394 и т д обозначают выходы километровых линий в системе координат смежной (третьей) зоны. При необходимости дополнительная координатная сетка прочерчивается на листе карты путем соединения одноименных черточек на противоположных сторонах рамки. Вновь построенная сетка является продолжением километровой сетки листа карты смежной зоны и должна полностью совпадать (смыкаться) с ней при склейке карты.
Определение прямоугольных координат точек по карте.
Вначале измеряют по перпендикуляру расстояние от точки до нижней километровой линии, по масштабу определяют "его действительную величину в метрах и приписывают справа к подписи километровой линии. При длине отрезка более километра вначале суммируют километры, а затем также приписывают число метров справа. Это будет координата х (абсцисса).
Таким же образом определяют и координату у (ординату), только расстояние от точки измеряют до левой стороны квадрата.
Пример определения координат точки А показан на рис 18- х = 5 877 100. у = 3 302 700
Здесь же дан пример определения координат точки В, расположенной у рамки листа карты в неполном квадрате- х == 5 874 850, у = 3 298 800
Измерения выполняют циркулем-измерителем, линейкой или координатомером. Простейшим координатомером служит офицерская линейка, на двух взаимно перпендикулярных краях, которой имеются миллиметровые деления и надписи х и у.
При определении координат координатомер накладывают на квадрат, в котором располагается точка, и, совместив вертикальную шкалу с его левой стороной, а горизонтальную--с точкой, как показано на рис 18, снимают отсчеты.
Отсчеты - в миллиметрах (десятые миллиметра отсчитывают на глаз) в соответствии с масштабом карты преобразуют в действительные величины - километры и метры, а затем величину, полученною по вертикальной шкале, суммируют (если она больше километра) с оцифровкой нижней стороны квадрата или приписывают к ней справа (если величина меньше километра). Это будет координата х точки.
Таким же образом получают и координату у величину, соответствующую отсчету по горизонтальной шкале, только суммирование производят с оцифровкой левой стороны квадрата.
На рис. 18 показан пример определения прямоугольных координат точки С: х = 5 873 300; у "3300 800.
Нанесение точек на карту по прямоугольным координатам. Прежде всего по координатам в километрах и оцифровкам километровых линий находят на карте квадрат, в котором должна быть расположена точка.
Квадрат местонахождения точки на карте масштаба 1:50 000, где километровые линии проведены через 1 км, находят непосредственно по координатам объекта в километрах. На карте масштаба 1:100000 километровые линии проведены через 2 км и подписаны четными числами, поэтому если одна или две координаты точки в километрах нечетные числа, то нужно находить квадрат, стороны которого подписаны числами на единицу меньше соответствующей координаты в километрах.
На карте масштаба 1:200 000 километровые линии проведены через 4 км и подписаны числами, кратными 4. Они могут быть меньше соответствующей координаты точки на 1,2 или 3 км. Например, если даны координаты точки (в километрах) х= 6755 и у = 4613, то стороны квадрата будут иметь оцифровки 6752 и 4612.
После нахождения квадрата, в котором расположена точка, рассчитывают ее удаление от нижней стороны квадрата и полученное расстояние откладывают в масштабе карты от нижних углов квадрата вверх. К полученным точкам прикладывают линейку и от левой стороны квадрата также в масштабе карты откладывают расстояние, равное удалению объекта от этой стороны.
На рис. 19 показан пример нанесения на карту точки Л по координатам х == 3 768 850, у = 29 457 500.
При работе с координатомером вначале также находят квадрат, в котором расположена точка. На этот квадрат накладывают координатомер, совмещают его вертикальную шкалу с западной стороной квадрата так, чтобы против нижней стороны квадрата был отсчет, соответствующий координате х. Затем, не изменяя положения координатомера, находят на горизонтальной шкале отсчет, соответствующий координате у. Точка против отсчета покажет ее местоположение, соответствующее данным координатам.
На рис. 19 показан пример нанесения на карту точки В, расположенной в неполном квадрате, по координатам ж =3 765 500; у =29 457 650.
Рис.19
В данном случае координатомер наложен так, что горизонтальная шкала его совмещена с северной стороной квадрата, а отсчет против западной его стороны соответствует разности координаты у точки и оцифровки этой стороны (29457 км 650 м-29456 км==1 км 650 м). Отсчет, соответствующий разности (шифровки северной стороны квадрата и координаты х (Э766 км - 3765 км 500 м), отложен по вертикальной шкале вниз. Местоположение точки В будет против штриха у отсчета 500 м.
Координаты являются методом обозначения точки на карте. В картографии используются различные координаты: плоские, прямоугольные, угловые, биполярные и полярные. В целях обозначения объектов недвижимого имущества на топографических картах применяются прямоугольные координаты. Ведь определение прямоугольных координат на топографических картах гораздо проще и точнее.
Прямоугольные координаты представлены в виде точек пересечения предполагаемых линий по данным взаимно перпендикулярных осей на плоской поверхности. Обычно данные оси на плоскости условно обозначаются латинскими буквами x (абсцисса), y (ордината). Предполагаемые линии, пересечение которых является точкой местоположения, определяются по целым и дробным числовым показателям на указанных осях.
В классической науке такая система носит название декартовая система. Однако классическая система Декарта и применяемая в целях топографического обозначения объектов на карте несколько различаются между собой. Так, в системе расположение осей повернуто на 90 градусов по углу. Названа такая система в честь основателя – Гаусса.
Система Гаусса используется для разделения всей территории Земли на отдельные зоны. Внутри каждой из зон координат идёт обозначение своих числовых выражений предполагаемых линий определения точек. Важным моментом является установление точки отсчёта внутри зоны.
Обычно в качестве такой точки выступает место пересечения срединного меридиана в полосе с экватором планеты. Данная точка не имеет материальной величины, так что обозначается она в качестве нулевой отметки, а её значение всегда равно нулю.
В целом такая система имеет вид сетки с бесконечным количеством числовых значений. Там могут отображаться две группы числовых значений:
- Значения со знаком минус – для обозначения объектов, находящихся южнее и к западу нулевой отметки.
- Положительные числовые значения – для указания мест расположения точек восточнее и севернее центральной точки системы координат.
Однако это не полная характеристика значений, указываемых в прямоугольных координатах точек на топографических картах. К примеру, при обозначении точек расположения на топографических картах отрицательные значение не используются.
Обозначения точек на топографических картах при помощи прямоугольных координат
Координатные зоны по системе Гаусса по всей земной поверхности пронумерованы. При обозначении точек на отдельных зонах помимо координат внутри самой зоны указывается номер, который приурочен к указанному квадрату по системе Гаусса.
Данный номер указывается перед отрицательными значениями координат на оси ординат. На оси абсцисс номер зоны не указывается. Указание номера означает смещение нулевой отметки на 500 км в левую сторону. Это сделано, чтобы исключить наличие значений со знаком минус на карте.
Значения обозначаются в километрах и равны они промежутку от нулевой отметки на оси до соответствующего места на карте.
Значение при этом указывается двояко:
- Полные координаты – указывается промежуток с точностью до метра.
- Сокращённые координаты – обозначаются лишь километры до десятков и метры.
Однако в основном используются полные координаты, так как точное указание местоположения точки имеет большое значение в топографических целях. Сокращённые координаты допускается использовать лишь в случае, когда топографическая карта охватывает не более 10 тысяч квадратных километров, т. е. реальные длины осей не превышают ста километров.
При обозначении отрицательного значения на оси У указывается сначала ось, потом номер зоны по системе Гаусса и в конце промежуток от нулевой отметки до объекта на карте. Примерно, прямоугольные координаты точки на топографической карте выглядят следующим образом: х = 5 650 450; у = 3 620 840.
В подобном случае значение по оси Х толкуется прямо, а для установления отдалённости точки по ординате от нулевой отметки из указанного значения вычитается 500 километров. А это значит, что точка в указанном примере находится в 5 650 километрах и 450 метрах от экватора и 120 километрах и 840 метрах от срединного меридиана.
Координатную сеть иначе ещё называют километровой, так как на мелких картах величина квадратов сетки равняется километру. На подобных картах километровая сеть изображается в виде линий, прочерченных параллельно осями и имеющих определённый интервал между собой. Интервал устанавливается в зависимости от масштаба.
Так, при масштабе 1: 25 000 значение интервала равняется 4 сантиметрам. При большем масштабе интервал не бывает меньше 2 сантиметров, невзирая на реальное расстояние между линиями. При масштабе больше чем 1: 500 000 сетка прямо не изображается. Обозначаются лишь выходные метки по краям карты.
Координатная сеть является условной для отдельной зоны, и для сопоставления топографии соседних зон по краям карты оставляются отметки сетки, которые соответствуют выходам сетки соседней зоны.
При обозначении значений координат на топографических картах координатная сеть позволяет быстрее обозначить необходимую точку. Отсчет расстояния идёт от границ квадрата координатной сетки. Каждая из сторон отдельного квадрата сетки имеет заранее определенную реальную длину в километрах (1, 2 и т. д. километров).
Чтобы осуществить определение координат точек на картах, очень важно иметь ориентиры. Если изначальное координаты ясны и нужно лишь указать их на карте, то делается это следующим образом:
- Определяется квадрат на сетке по километру координат.
- При помощи линейки отсчитываются метровые величины внутри квадрата, сначала по параллельной линии к оси абсцисс, затем к оси ординат.
- Вдоль линий указываются метровые значения.
В целом процедура завершена. Однако на практике не всё так просто. Зачастую не имеется значения изначальных координат. В таких случаях важно иметь определенные ориентиры, без которых найти точку представляется невозможным. В качестве ориентира может послужить любая близлежащая точка с известными координатами. Достаточно выяснить реальное расстояние между известной точкой и искомым объектом.
Указать адрес точки на карте на 100 % точно невозможно, так что определяются примерные значения.
С другой стороны, современные технологии позволяют произвести точные измерения на месте с моментальным отображением результатов на электронной топографической карте. Для этого применяются методы лазерного измерения или радиолокации. В любом случае при практической необходимости выяснения местоположения того или иного объекта недвижимости правильным решением будет обратиться к специалистам.
В качестве специалистов могут выступать:
- инженеры государственной службы геодезии и картографии (кадастр);
- специалисты частных инженерных служб.
При этом частные инженерные службы в своём распоряжении имеют более высокотехнологичное, а значит и более точное оборудование, нежели государственные органы. Разумеется, услуги таких специалистов стоят не дёшево.
Помимо непосредственного использования прямоугольной системы или системы Гаусса часто возникает необходимость сопоставления данных в указанной системе и на обычной географической карте. В таких случаях используется несколько методов:
- Метод перевода значения из числового значения в стандартные значения (широты и долготы).
- Способ наложения значения расстояний по масштабу.
- Метод сопоставления географической карты с целой зоны Гаусса.
Практическое применение находит лишь первый метод, так как он признан официальным способом переложения координат объектов недвижимости из обычной топографической карты в географическую. Именно данный способ используют государственные службы и частные специалисты.
С другой стороны, это один из самых сложных способов, требующий специальных навыков и знаний. Кроме того необходимо наличие сведений о ключевых топографических точках.
Самым простым способом признаётся метод наложения расстояния. По сути, зная масштаб, вычислить координаты может даже школьник при помощи обычной линейки. Однако погрешность в таком случае может быть равна десяткам километров.
Метод сопоставления карт применяется крайне редко. К примеру, такой способ может быть использован при корректировке генерального плана расширения населённых пунктов, определения границ регионов и государств.
Но данные методы позволяют не только решить частные проблемы, но и узнать координаты искомого объекта недвижимости. Такое стало возможным после предоставления открытого доступа к картам GPS. Постоянное спутниковое наблюдение за поверхностью земли позволило с точностью до метра определить местоположение практически любого объекта, не оснащенного радиопоглощающим покрытием.
Выяснить местоположение путем сопоставления данных с GPS и топографической карты может практически любой человек. Для этого необходимо:
- получить данные географических координат из системы GPS, выраженные в широте и долготе;
- по ним вычислить зону Гаусса (срединный меридиан в зоне);
- переложить точку соответственно зоне Гаусса.
Разумеется, задача не простая, но зато выполнимая. Другой вопрос - официальный статус такого вычисления.
Официальный статус определённых прямоугольных координат объектов недвижимости
Выявленные частным образом координаты никогда не будут иметь официального статуса. Ведь в целях топографии законодательством установлены специальные ГОСТы определения местоположения объектов недвижимости. Но при желании одним из вышеуказанных способов можно проверить соответствие официальных данных по тому или иному объекту недвижимости.
Очень редко, но всё же встречаются случаи, когда официальные данные в службе геодезистов не совсем точны. Никакого практического значения в повседневной жизни данный фактор может и не иметь. Однако он важен при определении так называемых «красных линий» на топографических картах. Это линии, по которым будут пролегать дороги и инженерные линии, и которые будут в будущем реквизированы.
Если по топографической карте данные объекта недвижимости указаны неверно, то его владелец может оказаться жертвой ошибочной реквизиции. Чтобы такого не случилось, при выявлении несоответствий фактических и официальных топографических координат необходимо сообщить об этом в уполномоченный орган (кадастр).
Если в удовлетворении ходатайства о проведении проверки и внесении изменений служба откажет, то можно добиться своего через суд. В таком случае будет назначена отдельная экспертиза с привлечением сторонних специалистов. В целом, процедура расходная и отнимает много времени, но рано или поздно владелец недвижимости может с таким столкнуться.
Полные и сокращённые прямоугольные координаты – 30 мин.
Система плоских прямоугольных координат является зональной. В каждой шестиградусной зоне, на которые делится вся поверхность Земли при ее изображении на карте в проекции Гаусса, устанавливается система плоских прямоугольных координат (рис.3.2.1).
Рис.3.2.1 Система плоских прямоугольных координат
Осями координат служат осевой меридиан зоны и экватор. Каждая зона принимается за плоскость. Таким образом, плановое положение точки земной поверхности в шестиградусной зоне определяется двумя линейными величинами относительно осевого меридиана этой зоны и экватора.
Координатные зоны имеют порядковые номера от 1 до60, возрастающие с запада на восток. Западный меридиан первой зоны совпадает с меридианом Гринвича. Следовательно, координатные оси каждой зоны занимают строго определенное положение на земной поверхности. Поэтому система плоских прямоугольных координат какой-либо зоны связана с системой координат остальных зон и с системой географических координат точек на поверхности Земли.
Прямоугольные координаты находят наиболее широкое применение при решении практических задач на местностии по карте. Они удобнее географических координат, так как оперировать линейными величинами проще, чем угловыми.
Плоскими прямоугольными координатами в топографии называются линейные величины - абсцисса х и ордината у , определяющие положение точки на плоскости (карте), на которой отображена по определенному математическому закону (в проекции Гаусса) поверхность земного эллипсоида. Эти координаты несколько отличаются от принятых в математике декартовых координат на плоскости. За положительное направление осей координат принято для оси абсцисс (осевого меридиана зоны) направление на север, для оси ординат (экватора эллипсоида) на восток.
Оси координат делят шестиградусную зону на четыре четверти, счет которых ведется по ходу часовой стрелки от положительного направления оси абсцисс X. Положение любой точки в каждой зоне относительно начала координат, например точки М, определяется кратчайшими расстояниями до осей координат, то есть по перпендикулярам.
Таким образом, при одних и тех же абсолютных значениях х и у точка М в зависимости от знаков координат может занимать в координатной зоне четыре различных положения.
Ширина любой координатной зоны составляет на экваторе примерно 670 км, на широте 40°-510 км, на широте 50° - 430 км. В Северном полушарии Земли (I и IV четверти зон) знаки абсцисс положительные. Знак ординаты в IV четверти отрицательный. Чтобы не иметь отрицательных значений ординат при работе с топографическими картами, в точке начала координат каждой зоны величина ординаты принята равной 500 км. Таким образом ось Х как бы переносится к западу от осевого меридиана на 500 км (рис. 3.2.2). В этом случае ордината любой точки, расположенной к западу от осевого меридиана зоны, будет всегда положительной и по абсолютному значению меньше 500 км, а ордината точки, расположенной к востоку от осевого меридиана, будет всегда больше 500 км.
Рис.3.2.2 Плоские прямоугольные координаты
Для связи ординат между зонами слева от записи ординаты точки приписывают номер зоны, в которой находится эта точка. Полученные таким образом координаты точки называются полными. Например, полные прямоугольные координаты точки х =2 567 845, у = 36 376 450.
Это означает, что точка находится в 2567 км 845 м к северу от экватора, в 36-й зоне и в 123 км 550 м к западу от осевого меридиана этой зоны (500000-376450=123550).
Прямоугольная координатная сетка на топографических картах. В каждой координатной зоне строится координатная сетка. Она представляет собой сетку квадратов, образованных линиями, параллельными координатным осям зоны. Линии сетки проводятся через целое число километров. Поэтому координатную сетку называют также километровой сеткой, а ее линии - километровыми.
Если изображение одной зоны с нанесенной на ней сеткой квадратов разделить на отдельные листы карты, то каждый лист будет покрыт координатной сеткой, составляющей часть разграфки, общей для всей зоны.
На карте масштаба 1:25 000 линии, образующие координатную сетку, проводятся через 4 см, то есть через 1 км на местности, а на картах масштабов 1:50000 - 1:200 000 - через 2 см (1, 2 и 4 км на местности соответственно). На карте масштаба 1:500 000 наносятся лишь выходы линий координатной сетки на внутренней рамке каждого листа через 2 см (10 км на местности). При необходимости по этим выходам координатные линии могут быть нанесены на карту.